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Abstract.

Despite ongoing efforts to reduce pollution, persistent ozone pollution in China remains a public health concern. To better

understand the causes of ozone pollution in China and to assess and evaluate the effectiveness of past, current, and planned

targeted pollution control strategies, estimates of the amounts of pollutants emitted from various sources are needed. To this

end, we have developed harmonized and integrated anthropogenic emission inventories for China, incorporating information5

from the existing national inventory for mainland China (MEIC) and three global inventories (CEDS, CAMS, HTAP) to cover

areas outside of China. The newly developed China INtegrated Emission Inventory (CINEI) includes emissions in China from

sectors currently omitted from the MEIC (ships, aviation, waste, and agriculture) that we incorporate from the global inven-

tories. To ensure harmonized emissions data, we performed mapping between different inventories, a process used to achieve

consistency between sectors, spatial resolution, and speciation of non-methane volatile organic compounds (NMVOCs). These10

harmonized and integrated inventories for China were used to drive WRF-Chem simulations for January (winter) and July 2017

(summer). Through a detailed evaluation of model results against available observations, we show that while the direct use of

global inventories alone can lead to severe over- or underestimation of pollutant mixing ratios, CINEI inventories perform

satisfactorily in simulating ozone (12% in summer and 43% in winter normalized mean bias) and its precursors, including

nitrogen dioxide (NO2, -0.5% in summer and 40% in winter) and carbon monoxide (CO, -50% in both seasons). Based on15

the comparison and modeling of this study, valuable insights into the spatio-temporal variability of ozone and the subsequent

design of future ozone mitigation strategies in China were provided.
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1 Introduction

China’s air quality has improved rapidly since 2013 in response to the implementation of mitigation strategies (Zhang et al.,

2019). Concentrations of particulate matter (PM2.5) and primary pollutants (e.g., nitrogen oxides, sulfur dioxide, and carbon20

monoxide) have decreased (Wang et al., 2019; Liu and Wang, 2020; Wang et al., 2023). However, ground-level ozone pollution

remains severe. In 2017, the population-weighted exposure-averaged mixing ratio of ozone in China reached 68.2 parts per

billion by volume (ppbv) (Yin et al., 2020), exceeding the World Health Organization (WHO) air quality standard of 50

ppbv (Lyu et al., 2023; World Health Organization, 2021). Ground-level ozone is a secondary pollutant formed in complex

photochemical reaction chains from its precursors, including nitrogen oxides (NOx = NO + NO2), carbon monoxide (CO),25

and non-methane volatile organic compounds (NMVOCs). Therefore, the amounts of emitted precursors based on different

anthropogenic emission inventories may lead to different estimates of ozone mixing ratios. To investigate near-surface ozone

pollution, its multi-year changes, and the effects of sectoral emissions of precursors on ozone distribution over China, it is

essential to accurately represent the amount and spatiotemporal variations of anthropogenic emissions of ozone precursors in

emission inventories (Li et al., 2017; Chang et al., 2022; Smith et al., 2022; Monks et al., 2015). Therefore, emission inventories30

are essential to provide the information needed to formulate effective strategies to further improve air quality (Hoesly et al.,

2018).

Over the past decade, anthropogenic emissions in China have undergone rapid changes due to air pollution reduction strate-

gies (Fig. S1a). In particular, since 2013 during the implementation of 12th Five-Year Plan period (12th Five-Year Plan, 2011),

there were significant reductions in anthropogenic emissions of -27% for NOx and -17% for CO (Zheng et al., 2018). These35

reductions were due to measures such as setting ultra-low emission standards for vehicles and factories, improving air quality

control technologies, and phasing out high-emitting factories (Li et al., 2017; Lu et al., 2020). After 2010, CO and NO2 mixing

ratios gradually fell below the WHO standards of 0.4 parts per million by volume (ppmv) for CO and 20 ppbv for NO2 (Text

S1 and Fig. S1b). Despite these significant improvements in air quality (Zhang et al., 2019), there is growing concern about

unintended increases in ozone levels (Li et al., 2019; Lu et al., 2020)., which may result from the co-effects of reduced NOx40

emissions and increased NMVOC emissions (Li et al., 2019). As a result, specific strategies targeting NMVOC emissions were

introduced in 2015, especially in the petrochemical and organic chemical industries. Despite these measures, maximum daily

8-h average ozone levels remained high in 2022 (Fig. S1b) and frequently exceeded the WHO thresholds during the warm

season (April to October, Fig. S1b). Although total NMVOC emissions have decreased in China, some studies attribute the

observed increase in ozone over the past decade to the increasing contribution of anthropogenic NMVOC emissions, espe-45

cially aromatics, alkenes, and oxygenated VOCs (OVOCs), mainly from the petrochemical industry and solvent use, to the

total NMVOCs (Li et al., 2014; Zhang et al., 2020, 2021; McDonald et al., 2018). In order to investigate the drivers of recent

changes in ozone pollution in China, it is crucial to develop accurate emission inventories that reflect policy-driven changes in

anthropogenic emissions.

However, existing anthropogenic emission inventories encounter discrepancies in sectoral emission (Solazzo et al., 2021).50

The discrepancy raises concerns about their accuracy and reliability (Crippa et al., 2021; McDonald et al., 2018). Anthro-
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pogenic emission inventories are typically constructed in a bottom-up manner, with sectoral emissions quantified using activity

data and emission factors (Solazzo et al., 2021). Activity data are mainly derived from official statistics (see Text S2 for details).

Emission factors provide the amount of emissions released per activity (Text S2). To obtain gridded emissions with specified

NMVOC speciation and high spatiotemporal resolution, we need more detailed NMVOC speciation profiles, temporal profiles,55

and associated source proxies to distribute emissions in space. Discrepancies in anthropogenic emissions between global, re-

gional, and national emission inventories in describing emissions within a region can be attributed to differences in all of the

aforementioned data. Regional and national inventories often use updated and more localized activity data, emission factors,

and spatial proxies (Text S3). Thus, they are likely to better quantify emissions within the region or nation of interest and

better describe their multi-year changes and spatial distributions compared to global inventories. However, national inventories60

that are limited to the region of interest do not capture air pollutants transported from regions outside the national territory. In

addition, some emission sectors may be missing. The use of different NMVOC speciation profiles can also lead to differences

in ozone simulations, and its influence must be considered (Rowlinson et al., 2024).

The integration of local or regional emissions into larger scale emissions, called MOSAIC emissions (Li et al., 2024b),

can improve the accuracy of emission inventories in reproducing the amounts and variations of emissions. This approach has65

been applied in many studies, including the integration of metropolitan-regional emissions into national emissions (Wu et al.,

2024), national emissions into continental emissions (Li et al., 2024a), and continental emissions into global emissions (Crippa

et al., 2023). The use of these integrated emission inventories in chemical transport models (CTMs) leads to improved model

performance in reproducing pollutant concentrations. A comprehensive comparison between the results of the simulations and

the observations can demonstrate the improvements achieved in pollutant simulations.70

In this study, we aim to construct a comprehensive anthropogenic emissions inventory for China (CINEI) by integrating the

emissions data from mainland China’s inventory (Multi-resolution Emission Inventory model for China, MEIC) with various

global emission inventories within our integrated (harmonized) emissions system (Fig. 1a). Our goal is to develop an emis-

sion inventory that integrates emissions from all sectors, well-defined localized NMVOC speciation, and provides a spatial

distribution of emissions consistent with the framework of global emission inventories. The processing method is presented in75

section 2.2. We discuss the results of CINEI emissions in terms of emission sectors (Section 3.1), NMVOC speciation (Sec-

tion 3.1), and spatial distributions (Section 3.1), and compare them with existing emission inventories. In order to assess the

reliability of the new CINEI inventory, we performed numerical WRF-Chem regional experiments based on CINEI, MEIC

(harmonized inventories) and three global inventories, as described in Section 3.1. The model performance is evaluated and

discussed in Section 3.1. Based on the discussion of this study, we make recommendations for future emissions and modeling80

studies (Section 4).
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Figure 1. Representation of the framework of an integrated (harmonized) emission inventory system (top two panels) and its evaluation

scheme (bottom panel). Figure 1a illustrates the procedure for the construction of the harmonized and integrated (CINEI) emission invento-

ries, which is explained in Section 2.2. Figure 1b shows the WRF-Chem experiments performed to validate the emission inventories, with

detailed explanations in Section 2.2.
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2 Methodology

2.1 Selection of anthropogenic emission inventories

For the purpose of developing the CINEI, we selected emission inventories based on the following criteria:

– Data availability: We prioritized emission inventories that are easily accessible and widely used by the scientific com-85

munity.

– Multi-annual coverage: The anthropogenic emission inventories need to span multiple years and accurately reproduce

emission changes within the recent 10-12 years.

– High temporal resolution: We selected emission inventories with monthly or higher temporal resolution to account for

seasonal variations.90

– Gridded emissions: Gridded emissions are essential for simulation using CTM.

– NMVOC speciation: NMVOCs is tropospheric ozone precursors and as such their they are crucial for ozone simulations

in CTM and understanding their potential impact on ozone formation, hence their emissions need to be adequately

speciated.

– Avoiding data duplication and unnecessary integrations: As some regional inventories are included in global inven-95

tories, only global inventories were selected for this study.

Based on the above considerations, we selected four anthropogenic emission inventories (Table 1) that include one regional

(national) and three global emission inventories. These are:

1. The Multi-resolution Emission Inventory for China (MEIC version 1.4): MEIC is a national inventory for mainland

China developed by Tsinghua University and updated to the year 2020 (Zheng et al., 2018, 2021a). Due to the 22100

emission sectors provided in the newer version 1.4 (released in 2023), we use MEICv1.4 to improve sectoral comparisons

in our study. The previous version, MEICv1.3, has been widely used in a number of research studies to date (Liu and

Wang, 2020; Wang et al., 2024). We also provide comparisons of emission amounts (NOx, CO, and NMVOCs) between

MEICv1.3 and MEICv1.4 in Fig. S2. MEICv1.4 data used in this study are provided in Zenodo (Zhang, 2025b). Absolute

differences of annual averages (MEICv1.3 values minus latest MEICv1.4 values over MEICv1.3 values) were calculated105

and then expressed as percentages with respect to the annual average emissions in the more recent emission inventory.

The differences in total pollutant emissions in China between the two versions were found to be less than 5%, and

differences between other versions of inventories follow the same calculation.

2. The Community Emissions Data System (CEDS, version 2021): This is a global emission inventory for the Coupled

Model Intercomparison Project Phase 6 (CMIP6) (Hoesly et al., 2018; Feng et al., 2020; Smith et al., 2022). CEDSv2021110

provides detailed descriptions of emission sectors and IPCC sector codes, which facilitates inter-comparison of sectoral
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emissions (Hoesly et al., 2024). Comparisons between CEDSv2021 and the previous version, CEDSv2019, suggest that

there are only slight differences (< 3%) in the emissions of ozone precursors in China (Fig. S4), therefore CEDSv2019

is not included in further analysis.

3. The Copernicus Atmosphere Monitoring Service emissions (CAMS, version 5.3): This dataset is based on the Emis-115

sion Database for Global Atmospheric Research (EDGAR version 5) until 2018, and projected to 2022 by using the

linear slopes of CEDS sectoral emissions from 2015 to 2019 (Granier et al., 2019; Doumbia et al., 2021; Soulie et al.,

2023). We also compared pollutant emissions in China in CAMSv5.3 and the latest version of EDGAR, EDGAR v6.1

(Fig. S3). CAMSv5.3 data used in this study are provided in Zenodo (Zhang, 2025b). Results indicate the similarity

between the two emission inventories, with differences ranging from 4 to 7% for total annual emission for China, from120

2008 to 2020. Thus, EDGAR v6.1 was not selected for this study.

4. Hemispheric Transport of Air Pollution (HTAP, version 3): HTAP is a newly published global emissions inventory

(2023) that incorporates the Regional Emission Inventory of Asia (REAS, version 3.2.1) for pollutant emissions in

East, Southeast, and South Asia (including China) (Kurokawa and Ohara, 2020; Crippa et al., 2023). HTAPv3 includes

more comprehensive sectoral emissions than REASv3.2.1, including domestic and international aviation and shipping,125

waste emissions, and agricultural waste burning from EDGAR (Monica, 2023). HTAPv3 reports higher emissions than

REASv3.2.1, by 2.5 Tg (8.8%) for NOx and by 2.5 Tg (8.7%) for NMVOC, while the difference in CO emissions

between the two inventories is less than 0.5% (Fig. S5 and Text S4). We retained the HTAP inventory in our study

because it is consistent with the framework of global emission inventories.

Table 1. List of emission inventories considered for integrated inventory

Acronym Version Period Spatial Resolution Website Last Access Time

MEIC 1.4 2008 to 2020 0.25° http://meicmodel.org.cn/?page_id=1772&lang=en March 2025

CAMS 5.3 2008 to 2020 0.1° https://eccad.sedoo.fr/#/metadata/479 May 2024

CEDS 2021 2008 to 2019 0.5° https://data.pnnl.gov/dataset/CEDS-4-21-21 May 2024

HTAP 3 2008 to 2018 0.1° https://edgar.jrc.ec.europa.eu/dataset_htap_v3 May 2024

2.2 Harmonizing and integrating emission inventories130

In order to improve comparability and build on the strengths of national (MEIC) and global emission inventories, our goal was

to develop an integrated emissions was to develop an integrated emission inventory for China (CINEI) based on harmonized

emission inventories, but with emissions from all activity sectors in China following the IPCC definitions of emission sectors

and updated NMVOC speciation with observation-based, localized profiles. To do this, we harmonized the emission inventories

by unifying the definition of emission sectors, spatial resolutions, and NMVOC speciation between the MEIC and global135
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emissions. The framework for creating the harmonized CINEI is shown in Fig. 1a, and the Python code for this processing can

be accessed on the Zenodo website (https://zenodo.org/records/15000795) and archived by Zhang (2025a). Further details are

provided below:

[Step 1 - Sectoral mapping]: Harmonizing emission sectors between the national and global emission inventories.

The classification of emission sectors often differs between different emission inventories. To compare sectoral emissions and140

harmonize emission sectors, we first need to use emission sector mapping tables to establish the correspondence between the

emission sector definitions in the selected emission inventories and the standard sub-sector codes of the IPCC (Intergovern-

mental Panel on Climate Change; IPCC, 2006), as shown in Fig. S6. The correspodance of emission sectors is based on their

definitions for each inventory, which are collected through extensive literature and data documentation on the official website

(Granier et al., 2019; Li et al., 2024b; Crippa et al., 2023). Eight sectors are defined in the harmonized and integrated emission145

inventories, including:

1. Transportation: Emissions from both road and non-road transport. Emissions are quantified based on fuel consumption,

and vehicles contributing to such emissions include heavy and light trucks, rail vehicles, passenger cars and motorcycles,

etc. Emissions from international shipping and aviation are excluded from this emission sector.

2. Residential: Emissions from small-scale residential and commercial activities, including heating, cooling, lighting and150

cooking, as well as auxiliary engines used in houses, commercial buildings, service institutes, etc.

3. Power: Emissions from electricity generation, commonly driven by large-scale intensive fuel combustion. The incinera-

tion of waste in waste-to-energy plants is also included.

4. Industry: Emissions from by-product industrial processes, including emissions from solvent volatilization, cement, iron

and steel production, fugitive emissions, refinery emissions and other fuel-related emissions.155

5. Agriculture: Emissions from agricultural soil, manure management, cultivation, and agriculture waste burning. Agricul-

ture waste burning includes straw burning, and excludes savannah burning (Crippa et al., 2023). Besides, transportation

emissions due to the usage of agricultural vehicles (such as fishing boats) are also included here.

6. Waste: Emissions related to solid waste disposal and wastewater treatment.

7. Aviation: Emissions from aviation activities, including the take-off, cruising and landing of aircraft.160

8. Ships: Emissions from shipping activities on both oceans and inland waterways.

Table 2 lists the data sources for CINEI sectoral emissions and the missing sectors in the existing inventories. By following

the IPCC sector definitions, we were able to identify sectors that were omitted from certain emission inventories (Fig. S6). For

CINEI, we kept the emissions for the four existing sectors (transportation, residential, industry, and energy) used in the MEIC,

and for the four missing sectors, we added emissions from various global emission inventories for the four missing sectors.165

Specifically, we used aviation and domestic shipping emissions from HTAP and ocean shipping emissions from CAMS. For
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the agriculture and waste sectors, we used the corresponding data from CEDS. In particular, agricultural emissions in the

MEIC only consider NH3. Therefore, agricultural emissions of all species from the CEDS were used in the CINEI. The above

processing ensures comprehensive sectoral coverage and consistency between national and global emission inventories.
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Table 2. Data sources of CINEI sectoral emissions and mapping with global emission inventories

Sectors CINEI Data Source
If provided by existing inventories

MEIC CEDS∗ CAMS HTAP∗

Power MEICv1.4 √√ √√ √∗∗ √√

Industry MEICv1.4 √√ √√ √∗∗ √√

Residential MEICv1.4 √√ √√ √√ √√

Aviation HTAPv3 missing missing missing √√

Transportation MEICv1.4 √√ √√ √√ √√

International Ships CAMSv5.3 missing √√ √√ √√

Domestic Ships HTAPv3 missing missing √√ √√

Agriculture HTAPv3
√∗∗ √√ √√ √√

Waste CEDSv2021 missing √√ √√ √∗∗

*As emissions from HTAP and CEDS are not extended to 2020, we use a linear regression of the emissions from 2008 to 2018 (2019)

for HTAP (CEDS) and extrapolate to 2020 for CINEI.

** indicates that the emissions inventory provides parts of the sectoral emissions, but misses some subsectors suggested by the IPCC

report. Details on IPCC subsectors and comparison to each inventory are listed in Fig. S6.

We also analyzed the changes in ozone precursor emissions in China. The trend in emissions from a sector x is calculated170

for the studied period of 2008 to 2020 using the Equation ( 1).

Tx =
Ex,2008∑k=1

n Ek,2008

×
∣∣∣∣∣
Ex,2020−Ex,2008

Ex,2008
−

∑k=1
n Ek,2020−

∑k=1
n Ek,2008∑k=1

n Ek,2008

∣∣∣∣∣ , (1)

where:

– Tx is the relative changes of emissions from the emission sector x in the end years for global inventories that stops at

2018 for HTAP and 2019 for CEDS, we extrapolate the data to year of 2020 through linear regression,175

– Ex,2008∑n
k=1 Ek,2008

is the relative changes of emissions from the emission sector x in the end years for global inventories that

stops at 2018 for HTAP and 2019 for CEDS, we extrapolate the data to year of 2020 through linear regression,

– Ex,2020−Ex,2008
Ex,2008

gives the relative change in emission from sector x from 2008 to 2020,

–
∑n

k=1 Ek,2020−
∑n

k=1 Ek,2008∑n
k=1 Ek,2008

gives the relative change in total emissions from 2008 to 2020.

We defined key sectors as those with an obvious influence on changes in total national emissions of a pollutant. We identified180

key sectors based on the following two criteria: (1) they show a clear increasing or decreasing trend in line with total emissions;

(2) the total contributions of the key sectors can explain more than 95% of the total emissions changes. We have adopted this

calculation from Intergovernmental Panel on Climate Change (IPCC) (2006).
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[Step 2 – Uniform spatial resolution]: Re-gridding emission data to the same spatial resolution. The global inventories

under consideration have different horizontal resolutions, ranging from 0.1° to 0.5° in both longitude and latitude. To ensure185

a consistent integration, we need to align their resolutions. Therefore, to match the resolution of the MEIC, we spatially

interpolated all global inventory data to the grid coordinate with a resolution of 0.25° × 0.25° (latitude x longitude). We used

‘Conservative’ algorithms for the adjustment, which ensures that the quantity of emissions in the new grids does not change

compared to that in the old grids. The emissions in 180 mass in the new grid cell k (denoted as Ek) are quantified by Equation

( 2),190

Ek =
∫ ∫

Ak

e(r)dA, (2)

where e(r) is the emission density in the old grid cell that intersects with this new grid, and Ak indicates the areas of intersections

between two grids (Dukowicz, 1984). These integrals must be calculated for all cells of the new mesh.

[Step 3 – NMVOC speciation mapping]: Aligning NMVOC emissions in all emission inventories to the same specia-

tion.195

NMVOC emissions are assigned different speciations in different inventories. NMVOC speciation in regional and national

inventories (e.g., MEIC and REAS) often follows chemical mechanisms widely used in models, such as the Carbon Bond

Mechanism (CBM) (Gery et al., 1989), the Regional Acid Deposition Model gas-phase chemical mechanism (RADM) (Iacono

et al., 2008), and the State Air Pollution Research Center (SAPRC) (Carter, 2015). Regional inventories often speciate NMVOC

species according to the Model for Ozone and Related chemical Tracers mechanism (MOZART) (Li et al., 2014; Huang et al.,200

2017). We also assumed MOZART speciation for the integrated inventory (Table S10). This facilitates comparison of speciated

NMVOC emissions with global inventories and application in global models, because the MOZART speciation is also used

in global inventories and global CTMs (Lamarque et al., 2010; Huang et al., 2017; Emmons et al., 2020). To perform the

integration of emissions of specific NMVOC species and to meet the requirements of simulations by CTMs, it is essential to

make the NMVOC speciation in different emission inventories consistent. For harmonized inventories, we applied a mapping205

table (Table S3) to align the MEIC NMVOC lumped species categories with those in the global inventories, and the MOZART

speciation is applied to NMVOC emissions in all inventories after mapping. For the CINEI, we updated the NMVOC speciation

by applying recently reported localized source profiles and lumped NMVOC emissions following the NMVOC categories in the

MOZART mechanism (Emmons et al., 2020). Total NMVOC emissions from different sectors were assigned to more than 80

specific VOC species based on NMVOC speciation profiles reported by Mo et al. (2016) and Sha et al. (2021) (details in Table210

S4 and Table S10). These profiles describe well the recent speciation of NMVOC emissions in China based on representative

measurements (Li et al., 2014). In order to evaluate and compare the impact of different NMVOC species on ozone formation,

ozone formation potentials (OFPs) are calculated in this study. For the NMVOC species j, its OFP value is calculated by

Equation ( 3):
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OFP(j) = EVOC(j)×MIR(j), (3)215

where EVOC(j) is the emissions of j, and MIR(j) is the maximum incremental reactivity of j, defined as the potential maximum

ozone production per consumption of j under high-NOx conditions (Carter, 1994). The MIR values used in this study were

derived from Carter (2015) and are listed in Table S5. The MIR indicates the amount of ozone growth as the incremental

emission of NMVOC species increases, and is unitless. Therefore, the unit of OFPs should be mass based and here we use

Tg-O3.220

[Step 4 – Emissions’ harmonization and integration]: Spatial harmonization and integration of emissions by species

and sector. In the previous three steps, the selected inventories (MEIC, CEDS, CAMS, HTAP) are transformed into new ones

with consistent sector types, spatial resolutions, and NMVOC speciation (MOZART). This step harmonizes and integrates the

national and global inventories and improves the compatibility of the integrated inventory with the chemical mechanism of the

CTM. We focus on anthropogenic pollutant emissions in East Asia (70.125°E to 149.875°E and 10.125°N to 59.875°N), which225

is gridded in 320× 200 grids. National and global inventories in this area are combined to produce Harmonized Emission

Inventories (HMEI) and CINEI, the details of which are presented below:

– Harmonized emission inventories (HMEI): In these inventories, anthropogenic emissions within Mainland China are

derived from the standard Chinese national inventories, MEIC and those outside of China are from the global emission

inventories. Based on the type of global inventory used in the processing, three harmonized global emission inventories230

were created: HM_CAMS (harmonized MEIC with the CAMS global inventory), HM_CEDS (CEDS), and HM_HTAP

(HTAP) when using MEIC.

– Integrated emission inventory (CINEI): Based on the harmonized emission inventories, CINEI also includes all emis-

sion sectors and updated NMVOC emissions speciated according to the MOZART chemical scheme (Zhang et al., 2025).

As mentioned above, emissions from four sectors, including ships, waste, aviation and agriculture, are missing in the235

MEIC. In the CINEI, emissions from these missing sectors in China are derived from the global emission inventories as

explained in Step 1 and shown in Table 2.

To consolidate the data fusion from national to global emission inventories at spatial scales, we calculated the Monte Carlo

uncertainty for sectoral emissions for the global inventory (CEDS) and the regional CINEI (Lee et al., 2024). We randomly

select 10000 samples from 64000 values (200 × 320), calculate the standard deviation of the samples, and repeat this step 1000240

times until the standard deviation does not change. We use the standard deviation to represent Monte Carlo uncertainties, and

if the standard deviations of the global and CINEI inventories are of the same magnitude, we assume that the data fusion is

reliable (Heuvelink and Brus, 2009).
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2.3 Evaluating emission inventories Using WRF-Chem Model

To evaluate the performance of the harmonized and CINEI inventories, we used the Weather Research and Forecasting model245

with Chemistry (WRF-Chem, version 4.3.2; Skamarock et al. (2019); WRF Model Development Team (2025)) to run simula-

tions for our region of interest with different inputs of anthropogenic emissions and compared the model results with measure-

ments of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2). We performed simulations using each of the three

global emission inventories (CAMS, CEDS, HTAP), three harmonized inventories (HM_CAMS, HM_CEDS, HM_HTAP),

and CINEI (Fig. 1b), and for two different simulation periods, January (representing winter) and July (representing summer)250

2017.

We used the same model setups for all experiments (Table S6). Specifically, we set up two unidirectionally nested simulation

domains with spatial resolutions of 36km× 36km and 12km× 12km (Fig. 2). Specifically, the inner domain includes the

major populated areas of eastern China. The domain has a dense network of air quality monitoring sites (Fig. 2) and meteoro-

logical monitoring sites (Fig. S7). The chemical initial and boundary conditions for the outer domain were derived from the255

6-hourly output of the CAM-chem model (Lamarque et al., 2010), while for the inner domain they were extracted from the

results of the simulation in the outer domain. MOZART (Emmons et al., 2020) was used to simulate gas-phase chemistry and

reactions, and MOSAIC (MOdel for Simulating Aerosol Interactions and Chemistry; (Hodzic and Knote, 2014)) was set as the

aerosol scheme. Biomass combustion emissions were taken from the FINN (Fire INventory from NCAR, version 1.5) inventory

(Wiedinmyer et al., 2011), and biogenic emissions are estimated using the Model of Emissions of Gases and Aerosols from260

Nature (MEGAN, version 2.1) (Guenther et al., 2012). We set the spin-up time to 6 days before the study periods to avoid the

influence of imbalanced chemical initial conditions on the simulation results.

To evaluate the model performance across all experiments, we compared the modeled hourly averaged mixing ratios of O3,

CO, and NO2 at the finer scale with corresponding observations at 969 national air quality monitoring sites. The modeled

meteorological variables, including temperatures at 2 m, wind speeds and directions at 10 m, were also validated with the265

3-hour observational data set at 136 sites obtained from the National Centers for Environmental Information (https://www.

ncei.noaa.gov/, last access: March 2025). Seven statistical metrics were used to determine the performance of the model. The

metrics include normalized mean bias (NMB), mean normalized bias (MNB), mean fractional bias (MFB), mean normalized

absolute error (MNAE), mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (R)

(Brasseur and Jacob, 2017). Table S7 provides information on their functions.270
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Figure 2. Model domains employed for WRF-Chem simulations in eastern China. The horizontal resolution of the outer Domain 01 (depicted

in gray) is 36 km, featuring 75×86 grids, including a total of observed 1372 sites (in dark blue). The inner Domain 02 (illustrated in yellow)

has a higher horizontal resolution of 12 km, with 160× 166 grids, covering observed 969 sites (in dark blue).
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3 Results and discussion

3.1 Sectoral emissions and comparison

CINEI shows the comprehensive sectoral anthropogenic emissions and reveals significant changes in ozone precursor emissions

(NOx, CO and NMVOCs) in China (Fig. 3a-c). These include the decrease in NOx emissions (-0.9±2.9 Tg yr−1) since 2012

and CO emissions (-7.0±23.4 Tg yr−1) since 2008 and the increase of NMVOC emissions (0.4±1.0 Tg yr−1) from 2008 to275

2019. CINEI also showed a slight decrease in 2020 due to the COVID-19 shutdown (Zheng et al., 2021a). In general, the major

sectors in the global inventories show a greater divergence from the national inventories. There is a of approximately 5% for

NOx of power generation with respect to the total emissions of CINEI, and a deviation of more than 10% for HTAP and CAMS

CO from residential activities. The deviations in the totals are minimal and the sectors are more comprehensive by including

the main sectors from the national inventory and key sectors (ships, waste, etc., as discussed in Text S6 and Tables S11-S13).).280

Global inventories (HTAP and CEDS) agree well with the national (MEIC) in terms of total emission levels and multi-year

changes in China (Fig. 3g-i). However, emissions in CAMS show notable differences from those in other inventories: CAMS

estimates lower NOx and CO emissions in China before 2014; CAMS displays the variation without rapid reduction during the

study period (Fig. 3d-f).

CINEI also provides the amount of emissions from eight anthropogenic sectors (Fig. 3a-c). The main sectors of the CINEI285

in China include industry (NOx, CO, NMVOCs), transportation (NOx, CO, NMVOCs), energy (NOx, CO, NMVOCs), and

transport (NOx, CO, NMVOCs), power (NOx) and residential (CO, NMVOCs). Compared to MEIC, CINEI includes the

contributions of the marine sector to NOx emissions, the waste sector to CO emissions, and the agricultural sector to NMVOC

emissions (Fig. 3d-f). Ignoring these emissions can lead to bias in the estimation of anthropogenic emissions and in the

simulation of ozone (von Schneidemesser et al., 2023). Differences in sectoral emissions (CINEI minus other inventories) are290

evident in major and omitted sectors (Fig. 3d-f). In general, emissions from the power sector are often higher in the three

global inventories, while those from the transport sector are mostly lower. The apparently lower NOx from transport and CO

from residential emissions in CAMS (and EDGAR) are mainly due to underestimated contributions. Although CEDS provides

total emission estimates closer to those of CINEI for China, there are still notable differences in the contributions of certain

sectors. In particular, the energy and residential sectors contribute more to NOx emissions, but lower emissions from shipping295

and industry offset these increases. Higher NMVOC emissions from the power sector are offset by those from the industry

sector. This is similar to the comparison of sectoral emissions in HTAP and CINEI.

We also analyzed the contributions of sectoral emissions to changes in total emissions and identified the key sectors for

emission changes of each pollutant. Table S14 summarizes the linear trends (slopes) of 8 sectoral emissions for NOx, CO, and

NMVOCs from 2008 to 2020, and the piece-wise slopes for sectoral emissions that show changes with increases followed by300

decreases (Table S15). The power sector is the key sector driving the decrease in NOx emissions, while most of the other sectors

lead to increasing NOx emissions. The changes in the power sector correspond well with the rapid decrease in NOx emissions

from power generation in MEIC v1.4 (Fig. S8), indicating the effect of the introduction of cleaner energy in power plants (Yan

et al., 2023). The major sectors contributing to the reduction in CO emissions over the study period include industry (60%
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reduction), residential (29%), and transportation (16%). Emissions from more specific sources, including the petrochemical305

industry, cooking, and gasoline-powered vehicles, also show significant reductions in MEIC v1.4 (Fig. S9). In addition, industry

is driving the increase in NMVOC emissions, despite the decrease in NMVOC emissions from the residential and transportation

sectors. These NMVOC emissions are associated with industrial painting, iron and steel industry, and architectural coatings in

MEIC v1.4 (Fig. S10). Thus, more efforts are warranted in the future to control NMVOC emissions from industrial processes

in China.310

In addition, ozone precursor emissions from the four missing sectors in the MEIC (ships, waste, agriculture and aviation)

are all increasing. NOx emissions of HTAP from shipping show an increasing trend of 0.10 ± 0.01 Tg yr−1. This trend appears

to offset the decrease in NOx emissions from the energy sector. We have therefore identified shipping, waste, aviation and

agriculture as key sectors due to their inverse relationship with total emission changes (Tables S11-S13). Therefore, ignoring

sectoral emissions of ozone precursors may lead to biased attribution results of ozone changes.315
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Figure 3. The top panels (a-c) show the interannual variability of NOx (NO2), CO, and NMVOC emissions across eight aggregated sectors

in the CINEI, and all data are listed in Tables S8-S10. The middle panels (d-f) depict the averaged annual differences from 2008 to 2018 in

sectoral emissions between each of the four inventories and CINEI (existing inventories minus CINEI). Sectoral emissions are indicated by

bars and total emissions by dots. The findings are based on the mean differences from 2008 to 2018, and the results for each year are shown

in Fig. S11. The bottom panels (d-f) present the interannual variability of total NOx (NO2), CO and NMVOC emissions in China from the

CINEI (in orange) and four selected emission inventories (MEIC in green, CAMS in black, CEDS in red, and HTAP in blue). Total emissions

from 8 sectors used from multiple inventories are provided in Tables S12-S14. 16
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3.2 Speciation of NMVOCs emission

The increase in NMVOC emissions is a potential contributor to severe ozone pollution in China (Li et al., 2019; Zhang et al.,

2021). Individual NMVOC species often differ in the amounts emitted and in their ozone formation potential, and thus con-

tribute differently to ozone formation. We ranked the top 20 NMVOC species in China according to their mean annual emissions

in CINEI and quantified their OFPs values (Fig. 4a). These NMVOCs species cumulatively contribute to more than 85% of the320

total OFPs by NMVOCs emissions, indicating their notable influence on ozone pollution. In general, NMVOCs species with

more abundant emissions tend to contribute more to OFPs, such as m/p-xylene and toluene, which together have an OFP value

of 23.1 Tg-O3 on an annual average from 2008 to 2020 (23.4% of the total OFPs). Propene, o-xylene and ethene, with higher

OH reactivity (characterized by their MIR values), also have significant contributions to total OFPs (propene 13.9 Tg-O3 and

14.1% in percentage contribution to total OFP, o-xylene 7.1 Tg-O3 and 7.2%, and ethene 6.9 Tg-O3 and 6.1%). In contrast,325

high emissions of ethylbenzene and styrene (10% of total NMVOC emissions) contribute only 7.2 Tg-O3 (6%) to the total

OFPs due to their low reactivity. Regarding the OFPs of different NMVOC groups, aromatics and alkenes contribute to 75% of

the total OFPs as shown in Fig. S12. This result is in good agreement with previously reported results (Li et al., 2019; Wu et al.,

2022). The OFPs values in VOCs categories are also compared with the result of previous studies (Table S16). The emission

and OFPs of all NMVOCs species on annual averages also for mainland China are shown in Tables S19 and S20.330

Targeting the emission sectors most associated with NMVOC species with high OFP values may be efficient for ozone

abatement. The sectoral contributions to the top 20 NMVOC species are shown in Figure 4b. M/p-xylene, toluene, propene

and o-xylene emissions are mainly from industrial sources (70%). This includes their use as solvents in industrial processes

(e.g. industrial painting and architectural coatings). The residential sector is also an important contributor to these NMVOC

species, accounting for 20-30%. Ethylene emissions show different characteristics: besides the significant contributions from335

the industrial and residential sectors, agriculture also accounts for a large share (32%), as does transport (25%), indicating the

contributions from fishing, harvesting and diesel vehicles. For the other NMVOC species in the top 20, industry and transport

are mostly the main sources and therefore NMVOC emission control should focus on the contributions of these two sectors.

For formaldehyde and acetaldehyde emissions, the agricultural sector is the main source, together with emissions from crop

burning (including burning of rice and wheat straw, maize, etc.). Ignoring agricultural NMVOC emissions in anthropogenic340

emission inventories may lead to an underestimation of the contribution of these species to ozone pollution. Finally, for the

three remaining sectors missing from the MEIC (waste, ships, and aviation), their overall contributions to emissions of the top

20 NMVOC species are limited (McDonald et al., 2018).

Targeting the emission sectors most related to NMVOC species with high OFP values may be efficient for ozone mitigation.

The sectoral contributions to the top 20 NMVOC species are shown in Fig. 4b. M/p-xylene, toluene, propene and o-xylene345

emissions are mainly derived from the industrial sources (~70%). This involves their usage as solvents in industrial processes

(e.g., industrial painting and architectural coatings). The residential sector also has an important contribution to these NMVOC

species, accounting for 20-30%. Ethene emissions show different characteristics: besides the considerable contributions of the

industrial and residential sectors, agriculture also accounts for a large proportion (32%) as does transportation (25%), indicating
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the contributions of fishing and harvesting and diesel vehichles. For the other NMVOC species among the top 20, industry and350

transportation are mostly the major sources, and therefore NMVOC emission control should focus on the contributions of these

two sectors. For formaldehyde and acetaldehyde emissions, the agricultural sector is the main source, related to the emissions

along with crop burning (including the burning of rice and wheat straw, maize, etc.). Ignoring agricultural NMVOC emissions

in anthropogenic emission inventories can lead to underestimated contributions of these species to ozone pollution. Finally, for

the three remaining sectors that are missing in MEIC (waste, ships and aviation), their contributions to the emissions of the top355

20 NMVOC species are overall limited (McDonald et al., 2018).

To evaluate the NMVOC speciation used in CINEI, we selected 9 hydrocarbon species and used their emission ratios to

C2H2 (mol/mol) for comparison with those in global and national inventories, as well as with observations over China (Figure

S13). We used C2H2 instead of CO because C2H2 and hydrocarbons are monitored with the same measurement system (GC

MS/FID). The in situ measurements of VOC species (in ppbv) were obtained from the literature (Lv et al., 2021; Huang et al.,360

2022; Li et al., 2022; Song et al., 2021). These data, obtained from megacities (Beijing, Shanghai, etc.) and provincial capitals,

are listed in Tables S17-S18. We extracted emissions at the same locations and dates and calculated the ratios of hydrocarbons

to C2H2. The selected VOCs have similar atmospheric lifetimes and sources in urban areas, primarily from transportation

and industrial emissions. Species treated as a single entity in emission inventories (e.g., ketones) and those not comparable

to observations (e.g., oxygenated VOCs) were excluded from the analysis. Our comparison showed that NMVOC speciation365

from emission inventories is quite uncertain due to the applied source profiles, different sectoral distributions and emission

masses. The ratios in the CINEI are closer to the observations, except for ethene and xylene. In contrast, the global and MEIC

inventories have lower ratios for alkanes compared to observations, possibly due to misrepresentation of the dominant sectoral

emission (solvent or industry) for these species. However, the ratios of primary alkenes (ethene and propene) in the MEIC and

CINEI exceed the observed values. Alkenes have faster loss rates via OH, which may lead to alkenes from primary source are370

degraded immediately. Therefore, the observed ratios of alkenes to C2H2 may be lower than its emission ratios (MIR > 9).

Therefore, the speciation of NMVOC emissions. Improving this description would also influence the homogenization of the

national inventory with global ones and the application of CTM simulations.
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Figure 4. (a) Mean annual emissions (blue bars in Tg yr−1) and OFPs (yellow line in Tg-O3 yr−1) of the top 20 NMVOCs species in CINEI

(ranked by emission amount). Error bars at the top of the columns represent the standard deviations of the emissions from 2008 to 2020. (b)

Sectoral contributions to the emissions of the top 20 NMVOC species. Emissions and OPFs of all NMVOC species in 8 sectors are provided

in Table S19 and Table S20 respectively.
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3.3 Harmonizing emissions on spatial scales

Fig. 5 shows the spatial distribution of NOx emissions from the CINEI dataset across eight sectors in East Asia in 2017.375

For emissions outside of China, we use CEDS emissions for the major sectors because CEDS incorporates national emissions

from surrounding countries and is widely used in global CTM models (Hoesly et al., 2018). We chose NOx as a representative

species to analyze the spatial distribution of pollutant emissions in CINEI. Emission maps for other species(SO2, NH3, CO,

C2H6, toluene, and C2H4) from CINEI are shown in Fig. S15.

Anthropogenic emissions, such as those from the residential, transportation, and waste sectors, tend to be high in densely380

populated areas of northern and eastern China, Japan, Korea, and India, indicating their close association with human activities

(see Fig. S14 for population distribution). NOx emissions from the energy and industry sectors, which are considered point

sources, are characterized by hotspots at sites for electricity generation, solvent volatilization, and cement, iron, and steel

production. The convergence of these sectoral data from the national emission inventory and CEDS for surrounding countries

in CINEI is tested by Monte Carlo simulations with comparisons to CEDS data. The Monte Carlo uncertainties of the two385

datasets are of the same order of magnitude, indicating that the possibility density of the CINEI is normal on the spatial

distribution and not separated into two datasets.

The distribution of shipping reveals shipping routes in the ocean and inland rivers. Aviation emissions distribution is related

to airline connections between different airports, with high values likely occurring near major airports in China. The emissions

of other pollutants suggest similar characteristics of spatial distributions (Figure S15).390

In addition, harmonized emission inventories used the default emissions for total emission amount from the national in-

ventory, but emissions outside China were taken from the three global inventories. To illustrate the difference in emissions

in mainland China and the similarity in emissions outside of China between national and global inventories, the distributions

of the paired comparisons (HM_CEDS vs. CEDS, HM_CAMS vs. CAMS, HM_HTAP vs. HTAP) are also shown in Figs.

S16-S19.395
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Figure 5. Spatial distribution of NOx (NO2) emissions (unit: ton grid−1 yr−1) from eight sectors in East Asia in 2017, and for power,

residential, industry, transport sectors, we add comparisons of Monte Carlo uncertainties between integrated (CINEI in orange) and global

inventory (CEDS, in blue).
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3.4 Comparisons of simulation results based on multiple anthropogenic emission inventories

To identify the most harmonized inventories suitable for regional simulations over China, the performance of WRF-Chem

modeling results based on the national inventory (MEIC) merged into three global inventories (HM_CEDS, HM_CAMS, and

HM_HTAP) has been were evaluated. The three harmonized inventories show minimal variation in the averages over the entire

domain where the grid contains observed sites (Text S10). The normalized mean biases (NMBs) among the three modeling400

results are 10% and 40% for ozone in summer and winter, respectively, -0.5% in summer and 40% in winter for NO2 and

-50% for CO for both seasons (Fig. S20). However, HM_CEDS shows better agreement with observations from coastal cities,

which have a deeper response to the transport of emissions to mainland China. In contrast, HM_CAMS and HM_HTAP have

significant biases. Accordingly, HM_CEDS was selected to represent all harmonized inventories for subsequent modeling

comparisons, hereafter abbreviated as HMEI.405

To further evaluate the performance of CINEI, HMEI and global inventories (CAMS, CEDS, HTAP), anthropogenic emis-

sions (NOx, CO and NMVOCs) are shown in the upper panels of Fig. 6 and 7, and modeling results (O3, NO2 and CO mixing

ratios) are compared with observations in the lower panels of Fig. 6 and 7. In both months the O3 mixing ratios are overes-

timated by CINEI (12% in summer and 42% in winter) and HMEI (20% and 40% NMB). The NO2 mixing ratios of CINEI

are closer to the observations by about 5% in summer and 40% in winter. The differences found between the two emission410

inventories can be attributed to the aggregation of shipping, waste and aviation emissions in the CINEI dataset. These sectors

lead to a small increase in emissions (less than 10%) in the CINEI inventory. Additional statistical analysis shows that CINEI

and HMEI have superior performance compared to global inventories (Text S11 and Fig. S23-24). The MFB for CINEI is ±0.3

in both seasons and the MNAE is less than 0.5, within the ranges suggested in the literature (Zhai et al., 2024). However, the

CO mixing ratios are apparently underestimated in all cases (up to 50% NMB). The underestimation of CO likely has links415

with (1) differences between urban and regional CO backgrounds, as (Zhao et al., 2012) reported using satellite data; (2) the

inaccurate OH mixing ratios in CTM leading to more CO sink (Gaubert et al., 2020). Therefore, both both CINEI and HMEI

result in reliable model performance.

Among the three global inventories, the CEDS result is in better agreement and slightly closer to the observations, with O3

NMB 6% and NO2 NMB -24% in summer (47% and 5% in winter). In the two seasons, the NOx emissions of CEDS are about420

-18% lower than that of CINEI, but the NMVOC emissions are about -50% lower than that of CINEI. In addition, CAMS

underestimates anthropogenic emissions of all precursors in both summer and winter. In particular, in July 2017, NMVOC

emissions are 90% lower in CAMS than in CINEI. As a consequence, O3 mixing ratios in summer (winter) are underpredicted

by -31% NMB (-26%) (for more details, see Supplementary Text S11 and accompanying figures). An unexpected result is

that the NO2 mixing ratios are overpredicted by ~35% in CAMS, despite the lower NOx emissions in CAMS. In contrast,425

HTAP has the highest emissions for the two studied months in all inventories, and the HTAP NO2 mixing ratio is the highest

in both seasons with 113% NMB (summer) and 121% (winter). Detailed statistical indices for these comparisons are provided

in Supplementary S11 and accompanying figures. However, the HTAP O3 mixing ratio is overpredicted in summer and largely

underpredicted in winter. The comparisons and validations suggest that ozone changes are non linearly related to anthropogenic
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Figure 6. The top panels (a-c) present total anthropogenic emission differences of ozone precursors (NOx, CO, and NMVOC) for July 2017

between the CINEI, HMEI, CAMS, CEDS, and HTAP inventories using the CINEI integrated emission inventory as a reference. Bottom

panels (d-f) show WRF-Chem simulated mixing ratios of O3, NO2, and CO for the same month and within the modeling domain (latitudes

from 25.5° to 43.6°; longitudes from 103.5° to 127.6°) using the different emission inventories. Individual columns show simulated mean

mixing ratios in the model domain for each emission inventory used. The dashed blue lines show average observed mixing ratios calculated

using the stations within the specified domain.

emissions of ozone precursors. Emissions and concentrations of precursors of O3 may also alter total OH loss rates (LOH) and430

further affect radical termination processes and ozone production rates.
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Figure 7. Same content with Figure 6, but in January 2017.
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4 Conclusions

The development of anthropogenic emission inventories used in simulations by CTMs faces various challenges, such as accu-

rate descriptions of emissions from complete sectors and with complete spatial coverage, as well as rapid emission changes

due to regional mitigation. In this study, we developed two new types of anthropogenic emission inventories for China to better435

meet the requirements in the study of long-term ozone changes:

– The harmonized inventories, HMEIs, combine emissions in mainland China from MEIC and emissions in regions outside

China from three different global emission inventories (CAMS, CEDS, HTAP).

– The integrated inventory, CINEI, is based on the harmonized inventory (harmonized MEIC with CEDS), but additionally

includes from the global inventories the emissions in China contributed by the missing emission sectors in the MEIC,440

including ships, waste, aviation, and agriculture.

To perform the integration, the emission sector types, spatial resolutions, and NMVOC speciation were made consistent

between the MEIC and the global emission inventories. The emission processing system developed for this study (Fig. 1a) is

able to meet these requirements. To evaluate the performance of harmonized and integrated inventories in the simulation of

ground-level ozone, we generated emission inventories for East Asia in two representative months (January and July 2017),445

applied them in the simulations of WRF-Chem, and compared the model results with the corresponding observations. The

results show that the application of harmonized and integrated inventories leads to a satisfactory performance in the simulation

of ozone and two of its precursors, NO2 and CO. In contrast, the direct application of global emission inventories (HTAP and

CAMS) can lead to a significant bias in the simulation results. The construction of our integrated emission inventories provides

valuable insights for designing ozone mitigation strategies and refining anthropogenic inventories for China:450

1. CINEI and HMEI show acceptable model performance when evaluated against observations and compared with simula-

tions driven by global inventories. In summer, the CINEI model results overestimate the mixing ratios of ozone by 5%

and those of NO2 by 0.5%. In winter, ozone is overestimated by 5.8 ppb, or 40%. CO is underestimated by about 30-50%

in both seasons, which is common to all simulation cases. However, the model performance needs to be further improved

and further studies are needed to reduce the bias by implementing better meteorological fields, chemical mechanisms,455

parameterizations of dynamical processes and deposition based on comprehensive comparisons with observations from

different sources.

2. The CEDS is a good option for providing emission data outside mainland China because of its better modeling perfor-

mance (O3 and NO2 NMB < 10%) compared to CAMS and HTAP. Due to its moderately long lifetime, ozone can be

transported from regions outside China (Zheng et al., 2021b; Qu et al., 2024). We found that the modeled ozone mixing460

ratios for three harmonized inventories differ from observations by 2 to 6 ppbv on spatial average. Thus, the selection of

inventories for the surrounding regions of China is also imperative for ozone simulations in China. The applicability of

the MOSAIC emission inventory product needs to be validated based on comparisons between observations and CTM

results driven by MOSAIC emissions.

25

https://doi.org/10.5194/egusphere-2025-268
Preprint. Discussion started: 26 March 2025
c© Author(s) 2025. CC BY 4.0 License.



3. Ozone precursor emissions from sectors initially omitted from the national inventory may be significant, such as NOx465

emissions from ships (~1 Tg yr−1) and CO emissions from waste (~5 Tg yr−1). The omission of these emissions may

lead to inconsistencies in the results of ozone simulations and overlook their potential role in ozone control.

4. Additional measures are needed to curb the increase in NMVOC emissions, despite effective reductions in NOx (-0.9 Tg

yr−1) and CO emissions (-7 Tg yr−1) over the past 10 years. In particular, the reduction of key species and sources of

NMVOC emissions, such as m/p-xylene and toluene from solvents and ethene from diesel vehicles, will be effective in470

reducing ozone in China due to the larger OFP of these species. Further research is needed to support the formulation of

effective strategies for future ozone control in China.

In a follow-up study, we will investigate the ability of CINEI, with updated speciated NMVOC emissions and more

sectoral emissions, to better represent total OH loss rates and contributions to ozone formation rates. As ozone mixing

ratios do not respond linearly to changes in ozone precursor emissions, the geographical extent of VOC and NOx re-475

stricted areas appears to change with the emission inventories adopted. We discuss the ozone photochemistry regime

under different emission scenarios and propose more insightful and strategic emission scenarios.
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Code availability. The python tool to create the integrated emission data (CINEI) is archived in Zenodo website (https://doi.org/10.5281/

zenodo.15000795) (Zhang, 2025a). WRF-Chem model code can be found in the GitHub (https://github.com/wrf-model/WRF/releases, last

accessed: March 2025) (Skamarock et al., 2019).480

Data availability. Integrated emission (CINEI) data are archived in PANGAEA website (https://doi.pangaea.de/10.1594/PANGAEA.974347)(Zhang

et al., 2025). HTAP emission data can be accessed from the Zenodo website (https://doi.org/10.5281/zenodo.7516361) (Monica, 2023). CEDS

emission data are available from the Zenodo website (https://doi.org/10.5281/zenodo.12803197) (Hoesly et al., 2024). National (MEIC) and

CAMs emission data are available at their official websites (http://meicmodel.org.cn/?page_id=1772&lang=en and https://eccad.sedoo.fr/,
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